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The earlier theories of reinforcement for short fibre reinforced composites have been 
extended to include the estimation of strain as well as stress. Thus the effect on the 
stress-strain curve of various parameters can be estimated. It is shown that the shape of 
the stress-strain curve is strongly dependent on the fibre aspect ratio, while being rela- 
tively little affected by the adhesion between fibres and matrix. The coefficient of 
friction has an important effect on the stress-strain curve, and so also does the residual 
radial stress at the f ibre-matrix interface. Unfortunately, little data is available at present 
on parameters such asfriction, adhesion coefficients and residual and Poissons shrinkage 
stresses. Consequently, we are not yet in a position to design short fibre composites for 
high strength and modulus, coupled with optimum toughness. 

1. Introduction 
The early theories of fibre reinforcement give 
satisfactory explanations of either the failure 
strength, or the Young's modulus, but cannot be 
used for both at the same time. Thus Cox [1] con- 
sidered elastic fibres reinforcing an elastic matrix, 
and assumed that the shears generated at the f ibre- 
matrix interface could always be withstood. The 
stress-strain curve on this model is a straight line, 
ending when some failure mechanism supervenes. 
Tyson and Davies [2] showed that failure of Cox's 
stress transfer mechanism must occur at low 
applied stresses, since the shear stresses at the f ibre- 
matrix interface become very high at the fibre end, 
even for very small applied stresses. 

Dow [3] extended Cox's treatment to include 
matrices whose post-yield behaviour was governed 
by an approximately linear stress-strain curve, at 
a lower slope than in the elastic region. The matrix 
could thus be treated as though it had a second 
elastic constant. This, however, was still essentially 
an elasticity treatment, and hence, like Cox's, 
useful only for the prediction of elastic constants. 

On the other hand, the frictional theory of  
Outwater [4], and the matrix flow theory des- 

cribed by Kelly and Davies [5] were developed in 
terms of stress only. Composite strains were not 
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included in the equations, and consequently they 
can only be used for the estimation of the modu- 
lus. Similarly Piggott's [6] combination of the Cox 
and Kelly and Davies approaches was only used for 
the estimation of stresses. 

The many texts on composite materials available 
today perpetuate this dichotomy, using the Cox 
theory, or improvements thereon, to show that 
with long fibres the Young's modulus of aligned 
fibre composites approaches the Law of Mixtures 
value, while for short fibres it falls below it by an 
amount depending on the fibre aspect ratio. The 
Outwater and/or Kelly and Davies approaches are 
used to show that composite strength varies with 
aspect ratio in a similar way. The incompatibility 
of the assumptions needed for the modulus 
expression and those needed for the strength ex- 
pression never seem to have received any attention. 
(However, it should be noted that with very 
brittle matrices, the stress-strain curves have been 
explained theoretically [7] ). 

Composite materials are being used in the range 
of stresses between the very low stresses at which 
the Cox theory can be used, and the failure 
stresses described by the failure theories. Thus, 
some understanding of their behaviour in this 
region is required. 
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Recently, Piggott [8] showed that the various 
approaches described above could be reconciled, 
and governing equations for the whole stress- 
strain curve could be derived, both for reinforced 
metals, and polymers. The polymer case is des- 
cribed in detail here, and the importance of such 
factors as adhesion and friction at the interface are 
discussed for aligned fibre composites containing 
fibres of various lengths, or rather, aspect ratios. 
The significance of the results obtained for such 
other properties as toughness are also discussed. 

2. Theory 
2.1. General  case 
The theory previously appearing in synopsis form 
[8] will first be described. The forces between 
fibres and matrix are assumed to be symmetrical 
about the fibre centre, and interactions between 
adjacent fibres [9] are neglected. Thus we need 
consider only the fibre half-length, Fig. 1. 

When the stresses applied to the comPosite are 
sufficiently low, there will be no slip between 
fibres and matrix. At high stresses slip occurs near 
the fibre ends. Let the length over which slip 
occurs be mL (0 < m < 1) where L is the fibre 
half-length. The fibre tensile stress in this region, 
Ore(X, era), will be a function of the distance x 
along the fibre, and matrix strain, era. Let its 
average value be 6re(era) and its value at x = 
L (1 --m)be txfi(e m). Assume that no stress transfer 
occurs across the fibre ends, so that ace = 0 at 
x = Z .  

Half fibre i' L , 1, ~__..2r 
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Figure 1 Schematic drawing of  fibre tensile stresses and 
interfacial shears. 
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It is assumed that Cox's [1 ] treatment can be 
applied in the unslipped region, but that the shear 
forces at the fibre surface cannot exceed a ~ y ,  
where a is an adhesion parameter (usually 0 < a < 
1) and Oray is the matrix yield stress. Thus in this 
region the fibre stress, ~e, is governed by the 
equation 

d 2 ore n 2 
dx 2 -- r2 (O'fc--Etem) (I) 

where r is the fibre radius and Et is the Young's 
modulus of the fibre and 

n 2 = 2Era/[(1 + vm)Etln.(27rxffvo] (2) 

for hexagonally packed fibres. Here E m is the 
Young's modulus and Vm the Poisson's ratio for 
the matrix. Vt is the fibre volume fraction. 

We can integrate Equation 1 with the boundary 
conditions Ore = cra at x = L(1 --m), remembering 

that the stresses are symmetrical about the fibre 
mid-point. Thus for x < L(1 --rn) 

ate = E f ~ m  -t- 

[Oil(era) --Etem] cosh (7 ) / cosh  n~ (3) 

where 

L 
= --(1 -- m) (4) 

Y 

e m is determined by differentiating Equation 3 
and putting dote/dx = - aamy/r at x = L(1--m). 
Thus 

em = [Ofi(em) + aOnmY cothngl /Et (5) 

Substituting Equation 5 into Equation 3 gives 

a~ = a~(em) + 

(6) 
for x < L(1 --m).  The maximum fibre stress, afro, 

is at x = 0: 



The average fibre stress, 6f, is obtained by inte- 
gration: 

1 r L ( I -  m) 
6e = ~- J a~edx + mere(era) (8) 

0 

= aOmy [ ( l - -m)  cothn~-- 1/ns]/n 

+ (1--m)afi(em) + mOfe(em ) (9) 

where s is the aspect ratio of the fibres, L/r. 
Finally, the composite stress, ae, is given by 

O e = Vf(~f q- (|--Vf)Emera ( ] 0 )  

Stress-strain curves may be plotted by substi- 
tution of appropriate values of m into Equations 5 
and 9, and calculation of ae using Equation 10. 
The loci of the curves depend very strongly on the 
assumptions made about the mode of stress trans- 
fer near the fibre ends (these determine all(era) 
and 0 fe(ern)). 

2.2. F ibre  re inforced  p o l y m e r s  
For reinforced polymers it is usually assumed that 
the high stresses at the f ibre-matrix interface near 
the fibre ends result in failure of the bond between 
fibres and matrix. Sliding of the fibres relative to 
the matrix can then occur, and this phenomenon 

has recently been examined in detail under con- 
ditions such that the matrix was under stress, as 
in stressed composites [10]. The sliding process was 

found to be governed by frictional forces which 
are themselves controlled by matrix and fibre con- 
tractions arising from Poisson's ratio effects, to- 
gether with residual contractions due, for example, 
to curing. 

The Poisson's contractions inside a composite 
have not been evaluated. Theoretical treatments 
yield results which do not even make it possible 
to decide, for a given volume fraction of fibres, 
whether the interfacial stresses are tensile or com- 
pressive-[1-1]. The short fibre case is more com- 
plicated than the continuous fibre case, and the 
only available formula for this [1 ] ] is unacceptable, 
since it tends to infinity as the volume fraction of 
fibre goes to zero, and in any case considers only 
one fibre, surrounded by a block of pure matrix 
material. 

We need terms which independently allow for 
the matrix contractions and the fibre contractions 
near their ends. These contractions are shown 
schematically in Fig. 2. In order to avoid com- 
plication at this Stage, these will be expressed by 
the simplest possible parameters. 
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Figure 2 Schematic view of radial displacements of matrix, fibre, and the fibre-matrix interface. The small elements 
indicate the stress in the fibres and matrix at the interface. 
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Consider the matrix first. When a tube of 
matrix is stressed axially, and contracts against a 
rigid liner, a simple elasticity treatment shows that 
the interfacial radial stress is --vraqm/(1 + urn). 
(The minus sign indicates that the stress is com- 
pressive). In a composite, the situation is a good 
deal more complex, but we could evidently ex- 
press the stress in the form --vl am where vl 
must depend on the Poisson's ratio of the matrix, 
but is likely also to be affected by fibre volume 
fraction, and the elastic moduli of  fibres and 
matrix. The prior work already quoted []1] 
indicates that its value may not be very different 
from/)m. 

Superposed on this stress will be the residual 
stress, or, due to cure shrinkage of the matrix, 
or differential thermal expansion of the fibres 
and matrix during manufacture. 

The fibre strain, due to its Poisson's con- 
traction, is v~of/Ef. Such a strain, if acting alone, 
and if translated directly into matrix strain at the 

fibre-matrix interface, would give rise to an 
interracial stress veotEra/Ef. I f  we replace vf by 
v2, we have a simple parameter which can be used 
to describe this contraction, and by analogy with 
vl ,  can be expected to depend principally on vr, 
but also to be affected by the volume fraction and 
elastic moduli. Its value is not likely to be very 
different from v~. 

These stresses can be superpose& Thus the 
normal stress at the fibre surface, oft, may be 
expressed by the equation 

Oft = -- Vlara + v2ofeEm/Ef + Or (11) 

The fibre stress in the end region is governed by 
friction and may be obtained from 

dole 2p ~__ - -  Oft 
dx r 

= 21a ( - -V lam + v2ofeEra/Ef + Or) 
r 

(12) 

where # is the coefficient of friction. By inte- 
gration of Equation 12 with o~e = 0 when x = 
L, and Om= Eraera we obtain 

E~(V~ ~ m  em - o~) Ore = 
Era v2 

{1 - e x p ( - 2 u v : E r a ( z  - x)/&r)} (13) 

Writing 

p = 21av2ms Era~E, (14) 

and remembering that off is Ore when x -- L (1 -- m) 
we can eliminate ofi and era in turn between 
Equations 5 and 13 to obtain 

av 2 0mycoth (n])/nE f -- Or(1 -- e-P )/Em 
Era -~ 

/)2 --/21 (1 -- e -v)  

(15) 

avl oraycoth(n~)/n - ores(1 -- e-P )/Em 
Oii ~- 

v~ - Vl  ( 1  - e - p )  

(16) 

Finally, the value of 6~e may be found by inte- 
gration of Equation 13 between the limits x = 
L (1 - -m)  and x = L, and division by mL; 

Ofe = O f f ( l  --e - p l  P]) (17) 

3. Stress-strain curves predicted 
We are now in a position to examine the effect 
on the stress-strain curves of the various para- 
meters. 

3.1. T h e  e f fec t  of  aspec t  rat io 
If the toughness of a composite is to be maxi- 
mized by using short fibres, it is most impor- 
tant to know what effect this will have on 
modulus and strength, and on the stress-strain 
c u r v e .  

We will consider a stiff graphite fibre re- 
inforced epoxy. We will use the values of p and 
o r found by Hadjis and Piggott [10] for steel in 
epoxy, since this appears to be the most nearly 
relevant test. Thus/~ = 0.19 and or = 3.0 MPa. We 
will assume that vl = Vm/(1 + Vm) , the expression 
normally used for the contraction of a very thick 
walled tube of matrix, and that v 2 is given with 
sufficient accuracy by v2 = vf/(1 + vm). (For a 
discussion of suitable values for vl and v2, and 
the effect of changing them, see Section 3.5.) The 
adhesion parameter, a, will have the value 1.0, 
for maximum possible adhesion. 

Fig. 3 shows stress-strain curves for the 
graphite-epoxy for aspect ratios ranging from 30 
to 10000. The curves have been terminated at 
the fibre breaking point, or at about 1% strain if 
the fibres do not break. The continuous curves 
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Figure 3 Effect of aspect ratio on stress-strain curves of  
short carbon fibre reinforced epoxy resin with Vf = 0.5. 
The solid curves start at the elastic limit, and the labels on 
the curves give the fibre aspect ratios. 

start at the completion o f  the elastic deformation, 
i.e., when adhesion failure occurs, and the fibres 
start sliding in the matrix. (During the elastic stage, 
the stress-strain curve is linear, of  course, and the 
dashed lines are used to illustrate this region.) The 
relevant fibre and matrix data are given in Table I. 

The curves show the expected tendency to- 
wards the Law of  Mixtures expression: 

Ee = Vf Ef 4- ( ] - -  vf)em (18) 

as the aspect ratio becomes large. A 10% deviation 
from the Law of  Mixtures is obtained for an aspect 
ratio o f  1000, while, when the aspect ratio is 
10 000, the deviation becomes insignificant. The 
critical aspect ratio is somewhere between 150 and 
200, since the fibres break when s = 200 and do 
not when s = 150. There is a yield drop for the 
aspect ratio o f  150, which becomes severe at lower 
aspect ratios. 

The composite strength never achieves the Law 
of Mixtures value, even when the aspect ratio 
tends to infinity. This is because the breaking 
strain o f  the matrix, emu = 0.028, exceeds that 

TABLE I Properties of fibres and matrix used for cal- 
culation of theoretical curves 

Material Young's modulus Poisson's Yield strength 
(GPa) ratio (GPa) 

Carbon fibres 377 0.16 2.3* 

Epoxy resin 2.5 0.34 0.060 

*Tensile strength. 
All curves were drawn for a volume fraction of each com- 
ponent of 0.5. 

of  the fibres, efu = 0.0061. The matrix thus carries 
a stress Eme m at the instant of  fibre failure, for 
s -+ oo. Thus, instead o f  the Law of  Mixtures for 

composite strength, Oeu, we have 

Oeu = Vf o~  + VmErae ~ (19) 

This result is already well established. 

3.2. The effect of the adhesion 
The adhesion parameter a, if varied between 0 and 
1, can be used to describe the effect of  extremely 
good adhesion or very poor adhesion as well as 
intermediate values. When a = 1 the interface 
fails at the matrix yield stress. This might be 
regarded as perfect adhesion, since when the ad- 
hesion is strong enough (i.e., stronger than the 

matrix itself), matrix failure will occur at or near 
the interface near the fibre end, once the applied 
stress has reached a high enough value. At the 
other end of  the scale, a = 0.001 represents a very 
weak bond. For example, an epoxy resin will yield 
at a shear stress of  about 35 MPa. Thus, when a = 
0.001, for an epoxy the adhesive fails at 35 kPa; 
this is indeed weak. 

Fig. 4 shows the effect o f  varying the adhesion 
parameter, a, for a number of  aspect ratios. The 
effect of  the adhesion is very small, except at low 
aspect ratios, and even when the aspect ratio is 
only 30, it merely smooths out the curve. The 
curves are drawn for good adhesion (a = 1) and 
vanishingly small adhesion ( a = 0 . 0 0 1 ) .  Inter- 
mediate values fail between these limits. The other 
constants are as in Fig. 3. 
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i i 
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Figure 4 Effect of adhesion coefficient, a, on stress-strain 
curves for carbon-epoxy, for fibre aspect ratios (s) of 100, 
200 and 1000, and Vf = 0.5. (For s = 1000 the curves for 
a = 1.0 and a = 0.001 are coincident). 
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The most significant effect of a is on the elastic 
limit. Equation 9 reduces to 

6f = aamy o t h n s - -  (20) 
ns 

when m = 0, i.e., at-the elastic limit. Thus the 
average fibre stress at this point is directly pro- 
portional to the adhesion parameter. 

3.3.  T h e  e f fec t  o f  residual stresses 
Fig. 5 shows the effect of  varying the residual 
stress, o,, at an aspect ratio of 200. All the other 
constants are as in Fig. 3. 

It is clear that the residual stress should be 
large and compressive for efficient reinforcement. 
If it is too small there is a danger of a large yield 
drop. Even with an aspect ratio of 1000, the stress 
drops to 70MPa at a strain of 0.55% (but sub- 
sequently rises again to 540MPa at 1% strain) 
when there is no residual stress. The critical aspect 
ratio appears to be affected by the residual stress, 
since the fibres do not break when it is--10MPa, 
though they do when it is --30 MPa. 

If  the residual stress is tensile, there is great 
danger of  complete failure at the yield stress. No 
stress transfer can occur in the fibre end regions 
when 

~'1Emem -- ar < 0 (21) 

since otherwise Equation 12 would give a negative 
value for ale, indicating that complete separation 
is occurring at the fibre-matrix interface. 
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Figure 5 Effect of  residual stress on the stress-strain 
curve for carbon-epoxy for a fibre aspect ratio of  200 and 
Vf = 0.5. The solid curves start at the elastic limit, and 
the labels on the curves give the residual stress, the nega- 
tive sign indicating compression. 
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Figure 6 Effect of friction coefficient on the stress- 
strain curve for carbon-epoxy for a fibre aspect ratio of  
200 and Vf = 0.5. The solid curves start at the elastic 
limit, and the labels on the curves give the friction co- 
efficient. 

At the yield point, em = 0.23% for the carbon- 
epoxy. Inserting this value into Equation 21, to- 
gether with the other data for the composite, we 
find that the residual stress must be less than + 1.4 
MPa. I f  the residual stress is tensile, and greater 
than this, reinforcement does not take place 
beyond the yield point of  the material, no matter 
how large the aspect ratio is. 

3.4. Effect of friction 
Fig. 6 shows the effect of varying the coefficient 
of  friction, #, at an aspect ratio of  200. When # = 
0.1, the critical aspect ratio is greater than 200, 
since the fibres do not break. The critical aspect 
ratio appears to be approximately 200 when/~ = 
0.15. 

3.5. Effect of matrix and fibre shrinkage 
coefficients 

In the absence of reliable data on the radial stresses 
at the fibre-matrix interface, an approximate 
evaluation of the effect of certain assumptions 
about the radial stresses will be made. 

We will assume that near the end of a fibre the 
composite acts as a thick walled tube, surrounding 
the fibre, and exerting a pressure Pi on it. Let the 
outer radius of the tube be R and the inner radius 
r, the Young's modulus E and the Poisson's ratio u. 

The interfacial shear stress will be assumed to 
act along the fibre direction only. Thus, although 
it affects the matrix and fibre axial stresses, am 
and of, it will not affect the matrix radial and 



circumferential stresses, Omr and Om0 , or the fibre 
radial and circumferential stresses of, and afo (see 
Fig. 2). 

The stresses at the inner wall o f  the tube can be 
evaluated from equations given by Timoshenko 
and Goodier [12] : 

where 

Ore0 

aw_r = -- Pi (22) 

R 2 + r  2 
- R 2 _ r  2 pi = bPi (23) 

b = (R 2 + r2)/(R 2 - - r  2) (24) 

The radial displacement at the inner walt due to 
the pressure is rpi(b + v ) /E ,  so, superimposing the 
Poisson's contraction due to the axial stress, i.e., 
- - vamr /E ,  we obtain, for the total radial displace- 
ment, umr, 

u ,~  = r [Pi(b + v) - vom ] / E  (25) 

Similarly, the stresses in the fibre may be cal- 
culated, and come to 

a s  = a~o = - - P i  (26) 

Since this is a state of  uniform compression, we 
may use the fibre radial strain to calculate the dis- 
placement directly. Thus, applying Hooke's Law, 

the fibre radial strain, e~r, is given by 

err = -- [vfof + (1 --  vf)Pi]/El (27) 

and the displacement is rear. 

Since the radial displacements must be equal 
as long as contact is maintained between fibres 
and matrix, we have 

VO m - -  v f o f E / E f  
Pi = (28) 

1 + b,, + (1 - v f ) ~ / &  

This is very similar to the Mooney and McGarry 
[13] equation for the continuous non-densely 
packed fibre case, if we let E = Era, v = Vm, and 
b >>a. This is because, for continuous fibres 
of/E~ = ore~Era, and the equation reduces to 

~ ( ~  - ~) 
Pi = 1 + vm + (1 --  v f )Em/Ef  (29) 

For fibre reinforced polymers E m >> El,  so that 
Equation 28 reduces, for b >> a, to 

Vm VfEm 
= - -  Om oi (30) Pi 1 q- v m EI ( I  + Vm) 
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Figure 7 Effect of Poisson's contractions on the stress- 
strain curve for carbon epoxy for a fibre aspect ratio of 
200 and Vf = 0.5. The Poisson contractions are strongly 
dependent on the value of E chosen (see Equation 28) 
and the curves are drawn for minimum and maximum 
possible values orE, and one intermediate value. 

The values of  v 1 and v~ used in Section 3.1 are in 
accordance with this equation, and thus in keeping 
with the Mooney and McGarry equation for E m < 
&. 

For short fibre reinforced composites, however, 
it may be more approPriate to equate E with E e 
rather than with Era. For large volume fractions, 
this affects the result very considerably, as can be 
seen in Fig. 7. Here the effect of  varying E from 
Em to E c, for s = 2 0 0  and V~=0 .5  is shown. 

The reduced matrix contractions resulting from 
the larger values of  E increase the yield drop effect 
and increase the critical aspect ratio. 

4. Discussion 
It has been shown than it is possible to extend 
Outwater's theory o f  reinforcement by friction to 
include the evaluation of  composite strains, and 
the effect of  matrix and fibre contractions. Thus 
stress-strain curves can now be predicted for 
fibre reinforced polymers, and these show the 
following features. 

(1) Using realistic values for such parameters as 
the coefficient of  friction, the high aspect ratios 
needed for reinforced polymers are clearly demon- 
strated. For example, with carbon fibre reinforced 
epoxy the critical aspect ratio is at least 150 and 
efficient reinforcement requires that the aspect 
ratio should be at least 1000. 

(2) Adhesion does not appear to have a very 
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large effect on the shape of  the stress-strain curve. 
Although it affects the elastic limit to a marked 
extent, efficient reinforcement can be obtained 
wffh ~ high aspect ~ ratios '(~000 "or m o r e ) w i t h  van- 
ishingly small adhesion (a = 0.001). 

(3) Residual stresses are very important. Short 
fibre composites can only be used at high stress 
levels (i.e., levels beyond the elastic limit) when 
the residual stresses are relatively large and com- 
pressive. Otherwise large yield drops are pre- 
dicted, and the composite could, in consequence, 
fail shddenly at the elastic limit. The combination 
of  poor adhesion and low residual stress appears to 
be particularly dangerous, since in this case the 
elastic limit is at low stress, and yielding could 
thus occur at low applied stress. 

(4) The coefficient of  friction is an important 
parameter, and has a large effect on the stress- 
strain curve for short fibres. 

Unfortunately, information on the parameters 
affecting the stress-strain curve is scanty. Al- 
though a lot o f  work on pull-out has been carried 
out, very little of  it has been done under con- 
ditions where the friction coefficient can be esti- 
mated. Clearly, much further work is needed here. 

Moreover, there is a marked lack o f  published 
data on stress-strain curves for well-characterized, 
short, aligned fibre reinforced polymers. The 
stress-strain curves predicted by the theory do, 
however, fit in with the general observation that 
short fibre composites do not have such good 
mechanical properties as continuous fibre re- 
inforced ones. 

Still another parameter on which information is 
scanty is the radial stress in composites. The 
theoretical treatments do not give definite results 
for a given volume fraction, and even the sign of  
these stresses is open to question. While experi- 
mental results for shear stresses are abundant, 
those for radial stresses are not. 

It is important that we have this data so that 
the critical aspect ratio can be predicted. Short 
fibre composites have an important role in the 

spectrum of  materials. Reinforced thermoplastics 
often have short fibres for ease of  processing (ex- 
trusion etc.) and this is also true of  some rein- 
forced thermosets, TO obtain the  best results for 
strength and modulus it is necessary to know the 
critical aspect ratio, so that conditions can be 
optimized to ensure that the aspect ratio in the 
finished composite is at least five to ten times this 
value. 

In addition, for advanced composites, where 
toughness is important, it is often desirable to have 
the aspect ratio no more than five times the 
critical value [ 12~]. This can obviously only be done 
when data is available which will permit the esti- 
mation of  the critical aspect ratio. 

Clearly, a great deal more work needs to be 
done before the design of  short fibre composites 
can be carried out on a rational basis. 
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